GRB science with LOFT

Lorenzo Amati

On behalf of the LOFT/GRB Working Group, with main contributions by E. Del Monte, B. Gendre, V. D'Elia, L. Izzo, R. Salvaterra, G. Stratta, A. Penacchioni & M. Feroci

The GRB phenomenon: a puzzle still to be solved

Despite the huge advances occurred in the last years, the GRB phenomenon is still far to be fully understood

Open issues include: physics and geometry of the prompt emission, unexpected early afterglow phenomenology (plateau, flares, ...), identification and understanding of sub-classes of GRBs (short/long, XRFs, subenergetic), GRB/SN connection, VHE emission, nature of the inner engine, cosmological use of GRBs, ... and more !

What LOFT can do for GRB science ?

□ LOFT, possibly in combination with other GRB experiments flying at the same epoch, can give us useful clues to some of the still open issues through:

1) Detection, accurate location and characterization of GRB prompt emission down to ~2 keV with the WFM (+ fast dissemination of ~arcmin position !)

2) Measurements of the afterglow emission up to ~40 keV with the LAD ?

16 32 48 63 79 95 111 127 143 Active detector area (square cm)

GRB X-ray prompt emission with LOFT/WFM

□ Main LOFT/WFM characteristics

Parameter	Requirement	Goal	
Point Source Location Accuracy	<1 arcmin	<0.5 arcmin	
Angular Resolution	<5 arcmin	<3 arcmin	
Sensitivity (5σ, on-axis)	$\begin{array}{rrrr} 1 \ {\rm s:} & 1 \ {\rm Crab} \\ & 3 \times 10^{-8} \ {\rm erg/cm^{2/s}} \\ 50 \ {\rm ks:} \ 5 \ {\rm mCrab} \\ & 1.5 \times 10^{-10} \ {\rm erg/cm^{2/s}} \end{array}$	$\begin{array}{rll} 1 \ {\rm s:} & 0.2 \ {\rm Crab} \\ & 6 \times 10^{-9} \ {\rm erg/cm^{2/s}} \\ 50 \ {\rm ks:} \ 2 \ {\rm mCrab} \\ & 6 \times 10^{-11} \ {\rm erg/cm^{2/s}} \end{array}$	
Field of View	π sr around the LAD pointing	1.5π sr around the LAD pointing	
Energy Range	$\begin{array}{ c c c } 2-30 \ \text{keV (primary);} \\ 30-80 \ \text{keV (extended)} \end{array} & \begin{array}{ c c } 1.5-30 \ \text{keV (primary);} \\ 30-80 \ \text{keV (extended)} \end{array} & \begin{array}{ c } 30-80 \ \text{keV (extended)} \end{array}$		
Energy Resolution	500 eV	300 eV	

□ It is recognized that the GRB phenomenon can be understood only going back to the study of the Prompt Emission

An energy band extending down to soft X-rays is needed.

Measurements down to a few keV were provided in the past by BeppoSAX and HETE-2, but better sensitivity and energy resolution are required to make a step forward

Present GRB experiments are limited to prompt emission > ~10 keV; near future (SVOM ?, UFFO?) > ~ 5 keV; proposed / under study (JANUS, LOBSTER, ASTAR, GAME) aim at going down to 1 keV or below

BeppoSAX (top: 2-28 keV, bottom: 40-700 keV)

□ Relevance of GRB prompt low energy (<15 keV) X-ray emission

– 0.2-1 keV 20 1-4 keV 4-10 keV rates 15 15-25 keV count 10 25-50 keV Scaled 50-100 keV 5 100-350 keV MWMM MM Month MUMMMMMW 300-1160 keV how www. www. www. www. www. 0 200 400 600 800 1000 Time since BAT trigger (s)

BeppoSAX (top: 2-28 keV, bottom: 40-700 keV) Frontera et al. 2000

Swift XRT (rare / unique case) + Swift/BAT + konus/WIND. Romano et al. 2006

Testing prompt emission mechanisms with X-ray spectra

physics of prompt emission still not settled, various scenarios: SSM internal shocks, IC-dominated internal shocks, external shocks, photospheric emission dominated models, kinetic energy dominated fireball, Poynting flux dominated fireball

α	$\alpha + 1$	$\alpha + 2$	
N(E)	F(E)	EF_{E}	model/spectrum
-3/2	-1/2	1/2	Synchrotron emission with cooling
-1	0	1	Quasi-saturated Comptonization
-2/3	1/3	4/3	Instantaneous synchrotron
0	1	2	Small pitch angle/jitter
			inverse Compton by single e^-
1	2	3	Black Body
2	3	4	Wien

most time averaged spectra of GRBs are well fit by synchrotron shock models
at early times, some spectra inconsistent with optically thin synchrotron: possible contribution of set IC component and/or thermal emission from the fireball photosphere

□ thermal models challenged by X-ray spectra

Amati et al. 2001, Frontera et al. 2000, Ghirlanda et al. 2007

□ Tansient bump, consistent with a 2 keV blackbody, observed in the low energy band with BeppoSAX WFC

□ Probing the circum-burst environment with X-ray spectra

LONG

- \succ energy budget up to >10⁵⁴ erg
- Iong duration GRBs
- metal rich (Fe, Ni, Co) circum-burst environment
- GRBs occur in star forming regions
- GRBs are associated with SNe
- likely collimated emission

SHORT

Hyperaccreting Black Holes

- energy budget up to 10⁵¹ 10⁵² erg
- \succ short duration (< 5 s)
- clean circum-burst environment
- ➢ old stellar population

□ X-ray features: properties (density profile, composition) of circum-burst environment (progenitors, X-ray redshift)

Frontera et al., ApJ, 2004, Amati et al, Science, 2000

X-Ray Flashes: origin, population size, link with GRB

□ Soft/long X-ray transients (GRB 060218 and XRF 080109 associated with SN 2006aj (at z = 0.038) and SN 2008D at z = 0.0064

- Debate: very soft/weak XRF or SN shock break-out ?
- Peak energy limits and energetics consistent with a very-low energy extension of the Ep,i-Eiso correlation holding for normal GRBs and XRFs: Evidence that these transients may be very soft and weak GRBs, thus confirming the existence of a population of sub-energetic GRB ?

Modjaz et al., ApJ, 2008

Ghisellini et al. 2006

Amati, 2009

□ Increasing the detection rate of high-z GRB with low energy threshold: SFR up to dark ages, pop III stars, ...

Stanek et al. 2010

Yonetoku et al. 2004

□ Eff. Area and GRB sensitivity of the LOFT/WFM w/r to present GRB detectors

□ Improvement in detection of soft and high-z GRBs w/r to present and next future experiments

□ Expected spectrum with LOFT/WFM assuming the K-edge observed from GRB990705 with BeppoSAX/WFC

E = 3.8 keV, τ = 1.4, exp: 13s, fl (40-700 keV) = 3.8x10⁻⁵ erg)

Expected spectrum with LOFT/WFM assuming the K-edge observed from GRB990705 with BeppoSAX/WFC: higher significance (thanks to better en. res) and higher detection rate (thanks to much broader FOV)

LOFT/WFM

BeppoSAX WFC+ GRBM

Expected spectrum with LOFT/WFM assuming the transient Black-body feature observed from GRB990712 with BeppoSAX/WFC

Soft BB component in GRB 990712 - WFM fit with PL

BB + PL simulated spectrum fit with a simple PL

□ Discriminating among different models- The case of GRB 090618

Discriminating among different models - The case of GRB 090618: LOFT/WFM will be capable of discriminating among Band and BB+PL thanks to its energy band extending below 10 keV

Fermi/GBM LOF/WFM (BB+PL) LOFT/WFM(Band)

GRB X-ray early afterglow with LOFT/LAD

□ The complex Early X-ray Afterglow phenomenology

- new features seen by Swift in X-ray early afterglow light curves (initial very steep decay, early breaks, flares) mostly unpredicted and unexplained
- initial steep decay: continuation of prompt emission, mini break due to patchy shell, IC up-scatter of the reverse shock sinchrotron emission ?
- Final decay: probably "refreshed shocks" (due either to long duration ejection or short ejection but with wide range of Γ)?
- flares: could be due to: refreshed shocks, IC from reverse shock, external density bumps, continued central engine activity, late internal shocks...

Absorption column and emission lines

emission lines in afterglow spectrum detected by BeppoSAX and Chandra for a few events, but not by Swift

> Swift detects intrinsic NH for many GRB afterglows, often inconsistent with NH from optical (Ly α)

➤ exploit large area and good spectral resolution of the LAD to solve the line issue and characterize with accuracy NH variation ?

□ Signatures of NS-magnetar progenitor ?

➢ in a fraction of GRB, an excess during the plateau phase was detected by Swift/XRT, inconsistent with externeal shock models, interpreted as a possible NS progenitor (Troja et al. 2007, O'Brien 2010, Lyons et al. 2010)

➤ Timing with the LAD could provide unique information (if on target within ~2-3 h)

After the initial (impulsive event) see a late excess or "internal plateau" followed by a very steep decay.

Propose "internal plateau" due to the spin-down of a magnetar which thencollapses.

Not seen in the optical which appears to show a fairly "standard" afterglow.

Late afterglow emission: less complex ...

~power-law spectra

...but standard model not always works !

SED of GRB 970508: fit with standard synchrotron shock model in slow cooling regime is OK

SED of GRB 000926: excess of X-ray emission with respect to synchrotron prediction: IC component ?

The puzzling case of GRB990123

Only one case of afterglow emission clear detection at energies > 10 keV: the bright GRB 990123 by BeppoSAX/PDS

The 15-60 keV flux is inconsistent with the lower energy spectrum and synchrotron emission models predictions

Maiorano et al. (2005)

The puzzling case of GRB990123

- the fit with a synchrotron + IC component is more satisfactory, but still problems with the "closure relationships" between spectral and decay indices
- alternative explanations include peculiar circum-burst properties and/or peculiar shock physics
- this shows the relevance of sensitive measurements of GRB hard X-ray afterglow emission

Sensitivity of the LOFT/LAD to GRB X-ray afterglow emission as a function of observation time

- strongly dependent on the time required to slew to the GRB position
- may provide sensitive measurements (comparable to or even better than Swift/XRT) if pointed to GRB position at max 6-8 hr after GRB trigger

Sensitivity of the LOFT/LAD to GRB X-ray afterglow emission as a function of observation time

- strongly dependent on the time required to slew to the GRB position
- may provide sensitive measurements (comparable to or even better than Swift/XRT) if pointed to GRB position at max 6-8 hr after GRB trigger

Sensitivity of the LOFT/LAD to GRB X-ray afterglow emission as a function of observation time

- strongly dependent on the time required to slew to the GRB position
- may provide sensitive measurements (comparable to or even better than Swift/XRT) if pointed to GRB position at max 6-8 hr after GRB trigger

LOFT/LAD measurement of hard X_ray (> 10 keV) afterglow emission for the brightest GRBs

50 ks observation starting 6hr from GRB onset (Swift/XRT and LOFT/LAD)

□ Prompt emission at > 40 keV with the LAD ?

> the huge area of the LAD combined with the lead glass collimator transparency as a function of off-axis and energy could allow detection of > 40 keV GRB prompt emission with several hundreds cm2 eff. area

- \succ if metal collimator, the possibility of leaving a small fraction of the LAD uncollimated will be considered
- > complement measurements of prompt emission by the WFM

□ Updated mission profile and instruments design in the last year are mostly positive for GRB science !

broadcast of WFM trigger time and onboard computed position within 20-30s through HETE2(SVOM)-like network of VHF stations

 \succ improved FOV (more than 4 sr) of the WFM, with a pair of cameras pointing to the anti-solar direction

> extended energy range (up to 80 keV) for both WFM and LAD

> trigger photon by photon mode for the WFM (300s)

reliability of the LAD detection of prompt emission (transparency of glass collimator at > 40 keV or, if metal collimator, uncollimated panel)

> TOO pointings with the LAD within 8 (can be pushed down to a few ?) hours from trigger

□ Prompt dissemination of ~arcmin GRB positions provided by WFM

- VHF+ ground stations (HETE-2 like): < 30s, possibly within a few s
- will be a fundamental service to the GRB community, given that neither Swift or SVOM may be operative in the > 2024 time frame
- ➢ increase rate and reduce bias of redshift estimates; allow broad-band study of GRBs starting from prompt emission; provide trigger for GW detectors

LOFT GRB Science in the >2022 context

□ No past, present or future (e.g., SVOM) GRB experiment has such a combination of low energy threshold, high energy resolution and wide FOV, which will make the LOFT/WFM unique for GRB science.

□ For instance, the BeppoSAX/WFC or the HETE-2/WXM had a low energy threshold around 2 keV, but with much worse energy resolution and smaller FOV). SVOM and UFFO (>2018 ?) will have a low energy threshold of 4-5 keV, but with significantly worse energy resolution and eff.area at low energies.

❑ With its capability of computing and promptly transmitting the GRB position to ground LOFT will: a) continue a fundamental "service" work for the astrophysical community, carried out presently by Swift (and, maybe, in the 2018-2022 time frame by SVOM) of allowing GRB follow-up and multi-wavelength studies with the best telescopes operating in the > 2022 time line (e.g., i.e., LSST, SKA, CTA, eROSITA; maybe XMM, Chandra, etc.); b) complement simultaneous observations by GRB experiments flying on other satellites by providing low energy extension and GRB position, in a way similar to what is presently done, e.g., by joining data from Swift, Fermi and Konus/WIND.

Conclusions

□ Loft can do significant GRB science by:

✓ exploiting the broad FOV, low energy threshod, excellent energy resolution and good effective area / sensitivity of the WFM to investigate the physics of prompt emission, absorption features by circum-burst material, the population of XRFs and high-z GRBs

✓ complementing simultaneous observations by GRB experiments flying on other satellites (e.g., Swift + Fermi, Swift + KW)

✓ performing timing and spectroscopy of the afterglow emission up to 30 keV with the LAD for the 3-4 brightest GRBs/year

□ onboard computation and prompt dissemination of GRB (~arcmin) position will be a fundamental service to the GRB (and not only) community in the > 2022 time frame

GRB science is of high interest to the broad astrophysical (cosm.) community

□ Further and refined investigations of the LOFT capabilities for GRB science will be performed within the Observatory Science / GRB working group http://www.iasfbo.inaf.it/~amati/loftgrb , amati@iasfbo.inaf.it