Neutron star oscillations, crustal fractures, and LOFT

Ian Jones

Mathematical Sciences, University of Southampton, UK

Overview

- Crustal strength plays a key role in several aspects of neutron star physics.
 - Determines maximum possible sizes of departures from axisymmetry.
 - Sets maximum amplitude of torsional modes of elastic oscillation.
 - Failure of crust plays key role in starquakes and magnetar flares.

人口 医水黄 医水黄 医水黄 化口

- Overlap with X-ray astronomy considerable, and has impact on Graviational wave (GW) searches.
- Aim of this talk is to describe how oscillations, breaking strain, GWs & LOFT fit together.
- Will focus on LMXBs, CCOs & magnetars.

Just how strong is the crust?

- Shear modulus has long been known to be $\lesssim 10^{29}$ erg cm⁻³.
- Breaking strain θ_{max} more difficult to estimate.
- Recent large-scale molecular dynamics of Horowitz & Kadau (2009) indicate very high breaking strain, θ_{max} ~ 0.1:

Of course, plastic flow may relax crust on longer timescales (Chugunov & Horowitz 2010).

LMXBs: Gravitational wave emission mechanisms

- LMXBs are potential targets for Advanced GW detectors.
- They may be at a spin equilibrium between GW spin-down and accretion spin-up:

$$h_0 \approx 5 \times 10^{-27} \left(\frac{300\,\mathrm{Hz}}{f_{\mathrm{spin}}}\right)^{1/2} \left(\frac{F_{\mathrm{X}}}{10^{-8}\,\mathrm{erg\,cm^{-2}\,s^{-1}}}\right)^{1/2}$$

- Both 'mountains' and r-modes are possible GW emission mechanisms.
 - For mountains, $f_{GW} = 2f_{spin}$.
 - For quadrupolar r-modes, $f_{\rm GW} = 4/3 f_{\rm spin}$, with $\sim 20\%$ 'uncertainty', related to stellar compactness M/R (Lockitch et al 2003).

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

-

► ⇒ If LOFT can supply f_{spin}, can distinguish the two mechanisms, and, in case of r-modes, measure compactness.

LMXBs: Gravitational wave searches thus far

- Two GW searches carried out so far, both targeting Sco X-1:
- Abbott et al (2007):
 - Analysed coherently about 6 hours of data.
 - Upper limit $h \lesssim 1.3 \times 10^{-21}$ over band 604 624 Hz.
 - Can be recast as an upper limit on ellipticity $\epsilon \lesssim 4 \times 10^{-4}$.
- Abadie et al (2011):
 - Analysed about 330 days of data using cross-correlation.
 - Obtained upper limits, stronger by factor of 5, over wide frequency band.
- Weakness of coherent search due to uncertainties in orbital parameters (Watts et al 2008).
- Connection to LOFT: Need better fix on orbital parameters to carry out proper coherent search.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

ъ

Central Compact Objects

- CCOs may be rapidly spinning down due to GW emission.
- Abadie et al. (2010) targeted Cas A.
- ▶ Searched 12 days of data, over interval 100 Hz–300 Hz, allowing for non-zero $\dot{f}_{\rm GW}$ and $\ddot{f}_{\rm GW}$, beating 'indirect' bound $h_0 \lesssim 1.2 \times 10^{-24}$:

(日)

Connection with LOFT: fix on f_{GW}(t) would allow much deeper search, and distinguish emission mechanism.

Magnetars: the basic picture

- Magnetar flares extremely energetic-possible sources of GW bursts.
- According to canonical Thompson-Duncan model, decay δB in magentic field induces strain θ in crust of shear modulus μ.
- Fracture occurs when breaking strain reaches critical value θ_{max} :

$$B\delta B \sim \mu \theta_{\rm max} \Rightarrow \frac{\delta B}{B} \sim 10^{-2} \left(\frac{\mu}{10^{29} \, {\rm erg} \, {\rm cm}^{-3}}\right) \left(\frac{\theta_{\rm max}}{0.1}\right) \left(\frac{10^{15} \, {\rm G}}{B}\right)^2$$

・ロット (雪) (日) (日)

 These fractures power axial oscillations of elasto-magentic character [Cedra-Duran's talk], as well as the relativistic fireball.

Magnetars: Gravitational wave searches thus far

Have been four GW papers on magnetar flares:

- Abbott et al (2007) targeted QPO frequencies of Dec 27th 2004 hyperflare of SGR 1801-20.
- > For 92.5 Hz QPO, got bound on GW energy \sim EM energy.

・ロット 御マ キョマ キョン

-

- More recent papers looked at other flares, and targeted mainly f-modes; bounds on E_{GW}/E_{EM} weaker.
- Connection with LOFT: accurate QPO frequencies and durations to guide GW searches.

Magnetar flares: why search for GWs from f-modes?

- There exist selection effects that favour seeing QPOs in the electromagnetic domain, but favour f-modes in the gravitational wave domain.
 - $\blacktriangleright\,$ F-mode decays on timescale $\lesssim 0.5$ s, QPOs live $\gtrsim 10^2$ s.
 - F-mode is a perfectly efficient GW emitter; torsional elastic/Alfve'n modes aren't.
 - If a significant fraction of *E*_{mag} dumped into GWs, should be detectable by aLIGO (loka 2001; Corsi & Owen 2011).
 - For given excitation energy, surface displacement for QPO-modes greater than that for f-mode—see next slide.
- Putting all this together, search for GWs from f-mode seems well motivated. However ...

Magnetar flares: a simple scaling argument for amplitudes

If an energy E is deposited in a mode of frequency ω, a typical fluid element will undergo a displacement δr:

$$E \sim M_{\rm mode} \omega^2 (\delta r)^2$$
,

where $M_{\rm mode}$ is the portion of the stellar mass that participates in mode.

For f-mode,
$$M_{\rm mode} \sim M$$
, $f \sim {\rm kHz}$.

► For torsional modes, M_{mode} may lie in interval (M_{crust}, M), depending upon strength of coupling of crust to core, while observed QPOs span interval (~ 30, ~ 600) Hz.

Parameterising:

$$\frac{\delta r_{\rm f-mode}}{\delta r_{\rm torsional}} \sim 5 \times 10^{-3} \left(\frac{f_{\rm elastic}}{30 \rm Hz}\right) \left(\frac{2 \rm \, kHz}{f_{\rm f-mode}}\right) \left(\frac{M_{\rm torsional}/M}{0.1}\right)^{1/2} \left(\frac{E_{\rm f-mode}}{E_{\rm torsional}}\right)^{1/2}_{\substack{\text{Stool of Mathematics}}}$$

Magnetar flares: more detailed modelling

More detailed modelling seems to indicated that elastic/magnetic QPOs are more likely to be detectable than f-modes:

Levin & van Hoven (2011) used simple analytic argument to show that, in fact, only a small fraction of total burst energy deposited in f-mode:

$$\Delta E_{\rm f-mode} \lesssim \frac{E_{\rm mag}}{E_{\rm grav}} E_{\rm mag} \sim 10^{-6} E_{\rm mag}. \label{eq:deltaEf}$$

Numerical simulation of global magnetic instability of Zink et al. (2012) also pessimistic for f-modes, but torsional modes more easily detectable (see also Ciolfi & Rezzolla 2012):

Magnetar flares

- So, in terms of GWs, torsional modes seem more promising than f-modes.
- Further searches for both types may nevertheless be carried out.
- Challenge for X-ray astronomy/LOFT: could f-mode excitation be seen, or at least constrained?

Decay of modes

- Decay time of f-modes well constrained by theory ($\tau_{\rm f} \lesssim$ 0.5 s).
- But what is decay time for torsional modes? Presumably at least as long as the observed lifetimes of ~ 10² s, as this reflects lifetime of fireball, not of mode.
- Connection with LOFT: search to see if actual stellar oscillation lives longer than the previously observed (fireball) QPOs.

Decay of modes cont ...

In collaboration with Kostas Glampedakis, am looking at mechanisms that damp torsional modes. These include:

- ► Internal dissipation; cutting of vortices through flux tubes seems leading mechanism, with $\tau \sim 10^2$ s for Alfveń modes in core.
- External dissipation: shaking of surface can launch waves into magnetosphere, where energy is then dissipated. Find $\tau \sim 10^2$ s for crustal elastic mode.
- Investigated other mechanisms, and obtained variety of longer timescales; there are several possibilities, no one of which we are confident can be excluded.
- Decay rate may even undergo abrupt changes, as nature of dominant dissipation mechanism can depend upon amplitude.
- Connection with LOFT: Measurement of decay times can shed light on dominant damping mechanism, giving insight into nature of stellar core and magnetosphere.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

In the context of stellar oscillation/rotation, LOFT can potentially:

- Measure spin frequency/orbital parameters of LMXBs, to guide GW search and distinguish between rival emission mechanisms.
- Measure spin evolution of CCOs, to guide GW search and distinguish between rival emission mechanisms.
- Measure magnetar QPO frequencies, amplitudes, and decay times, and look for additional mode excitation, to guide GW searches, and give insight into physics of stellar crust, core and magnetosphere.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

3