Gravitational Waves and LOFT

Ilya Mandel (University of Birmingham) June 25, 2013

First UK LOFT Science meeting, London

Jason Tye, University of Birmingham

Jason Tye, University of Birmingham

Opportunity and Challenge

GWs carry a lot of energy, but interact weakly: can pass through everything, including detectors!

Michelson-type interferometers

LIGO Noise Spectrum

Predicting merger rates

Method	Strength	Weakness		
Direct extrapolation from observed Galactic binaries	Most direct available probe; ~10 known (~5 merging) Galactic binary pulsars	Low statistics, poorly known selection effects, only relevant for BNS systems		
Extrapolation from short GRB rates	Potentially direct probe of mergers involving NS out to large distances (z~2)	Uncertain provenance, ill- constrained beaming factors and selection effects		
Population synthesis of isolated binaries	Applies to all binary types, creates models for future astrophysical inference	A number of poorly known input parameters (SNe kicks, winds, common envelope)		
Forward evolution of observed X-ray binaries	Combination of observations and population synthesis	Uncertain selection effects, mass measurements, and modeling assumptions		
Dynamical formation in dense environments	Independent scenario, less sensitive to binary evolution	Poorly known dynamics of globular and nuclear clusters		

Merger Rate Predictions

[Abadie et al., 2011]

Merger and Detection Rates

Advanced detector prospects

	Estimated	$E_{ m GW}=10^{-2}M_\odot c^2$				Number		% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS w		ithin	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 deg^2$	$20 \mathrm{deg}^2$	
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	-	
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12	
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12	
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28	
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48	

[Aasi+ (LSC+Virgo), arXiv:1304.0670]

- Comparing predicted rates of binary mergers with model predictions can allow us to constrain the input (astro)physics
- Can learn a lot more by comparing distributions of observed parameters (masses, spins) with model predictions

Predictions of component mass distributions

11

- Comparing predicted rates of binary mergers with model predictions can allow us to constrain the input (astro)physics
- Can learn a lot more by comparing distributions of observed parameters (masses, spins) with model predictions
 - » Requires accurate parameter estimation on individual sources

- Comparing predicted rates of binary mergers with model predictions can allow us to constrain the input (astro)physics
- Can learn a lot more by comparing distributions of observed parameters (masses, spins) with model predictions
 - » Requires accurate parameter estimation on individual sources
 - Requires combining information from multiple events to construct a statement about population distribution (accounting for selection bias, etc.)
 - » Requires a library of catalogs of simulations based on different assumed astrophysical parameters
 - » Requires a pipeline for comparing observations and catalogs
 - » We need to be able to test population synthesis models themselves: need to over-determine the parameters... how many detections will this require? what will be the correlations/degeneracies in the astrophysical parameter space?

- Comparing predicted rates of binary mergers with model predictions can allow us to constrain the input (astro)physics
- Can learn a lot more by comparing distributions of observed parameters (masses, spins) with model predictions
- (Almost) Model-independent inference

Where does LOFT fit in?

- Complementary observations of similar source types vs. multi-messenger observations of the same sources
- Why complementary?
 - » Different selection effects -> sensitivity to different subpopulations when measuring distributions of a property -- e.g., masses for mass gap
 - » Sensitivity to different aspects of a source -- e.g., bulk properties vs. surface properties for neutron stars

Multimessenger astronomy

Targeting GW searches on WFM transients

- EM transient tells us there is a high probability of a signal present (depends on timing accuracy and confidence of association with binary merger); also learn some of the binary's parameters (sky location; possibly distance; possibly inclination)
- This allows for a reduction in threshold for detection for a given false alarm:

$$\zeta_{\rm SNR} \equiv \frac{\rm SNR_{\rm EM}}{\rm SNR} = \left[\frac{\ln \left(\mathcal{O}_{\rm EM} \cdot \left[\frac{p(\rm GW|\rm EM)}{p(\rm N|\rm EM)} \cdot \eta_{\rm EM} \right]^{-1} \right)}{\ln \left(\mathcal{O} \cdot \left[\frac{p(\rm GW)}{p(\rm N)} \cdot \eta \right]^{-1} \right)} \right]^{\frac{1}{2}}$$

- Could increase rate of multi-messenger observations by up to 40% [Kelley, IM, Ramirez-Ruiz, arXiv:1209.3027]
- But nearest confident SGRB detection only at z=0.12...

Following up GW triggers with LAD

- GW sky localization is poor, tens to hundred(s) sq. deg. Need to cover a large uncertainty region (FOV)
- X-ray prompt emission is short, and afterglows are weak
- Need to slew quickly or point *very* deeply

A few other possibilities

- X-ray signatures accompanying massive black hole mergers [e.g., Bode et al.] vs. LISA observations
- Precise timing observations of neutron stars could increase the sensitivity of targeted searches for "continuous" GWs [e.g., Owen, 2009]

- Search for GWs from excited NS vibrational modes
- Complementary information about masses, spins of NSs and BHs (e.g., IMBH discovery)
- Complementary tests of GR, NS EOS measurements

Summary

- Advanced LIGO/Virgo are likely to see multiple NS-NS, NS-BH, BH-BH coalescences; tens or more coalescences may be seen according to some models
- Observations of different systems could yield complementary information about populations
- Detections of X-ray transients in all-sky-monitor surveys will make it easier to search for GW signatures in archival data
- X-ray followups of GW triggers with LAD will be difficult
- More opportunities for multimessenger observations with LISA, continuous GW sources