Uncovering the QPO mechanism with LOFT

Adam Ingram

Lucy Heil, Chris Done, Michiel van der Klis, P Chris Fragile, Phil Uttley

Low frequency QPOs

Low frequency QPOs

Truncated disk model

Done, Gierlinski & Kubota (2007)

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

Truncated disk model ANTON PANNEKOEK

ASTRONOMICAL INSTITU

Truncated disk model

Lense & Thirring (1918); Stella & Vietri (1998)

Lense & Thirring (1918); Stella & Vietri (1998)

Lense & Thirring (1918); Stella & Vietri (1998)

m = 1 HFGM Mode Frequency = 29 Hz Growth Rate = -0.6 Hz Q = 48

Markovic´, Lamb, Duez, Engelhard, Fregeau & Huffenberger

Bardeen & Petterson (1975)

The QPO modulates the power law emission

The QPO amplitude depends on inclination angle

Energy (keV)

Ingram & Done (2012b)

Fabian et al (1989)

Hard State

Energy (keV)

Hard State

0.9

5

Energy (keV)

7

8

6

LOFT

Hard State Intermediate State

Hard State

Intermediate State

r_o = 60; *i* = 60

r_o = 7; *i* = 60

LOFT

LOFT

 $I(r,\phi) \sim r^{-q} \left| A \exp\left(\frac{\phi^2}{2\Delta^2}\right) + B \right|$

LOFT

XMM

 $r_o = 30$; $f_{QPO} \sim 1Hz - `sweet spot'$

Savitsky-Golay filter

4 phase bins: max, fall, min, rise

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

... so can phase bin but need LOTS of counts:

GRO 1655-40; QPO~2Hz

... so can phase bin but need LOTS of counts:

GRS 1915+105; QPO~2Hz

... so can phase bin but need LOTS of counts:

GRS 1915+105; QPO~2Hz

Conclusions

- If QPOs are due to precession, the iron line will rock on the QPO frequency
- LOFT will be able to detect this easily
- This will provide a very good diagnostic for inclination and disc inner edge
- Phase binning the QPO is possible now
- ... but need *very* long exposures

Savitsky-Golay filter: calculate the nth derivative

Normalise each half-cycle of the 1st derivative to classify phase

Conclusions

F

... so can phase bin but need LOTS of counts:

... so can phase bin but need LOTS of counts:

... so can phase bin but need LOTS of counts:

... so can phase bin but need LOTS of counts:

GRO 1655-40; QPO~2Hz

... so can phase bin but need LOTS of counts:

GRS 1915+105; QPO~2Hz

- 2-20 keV light curve of this model
- Apply a flux selection to find the QPO peak and frough
- •The rising section will have maximum blue shift
- The falling section will have maximum red shift

