≜UCL

Synergies between LOFT/LAD and the E-ELT

R. P. Mignani^{1,2,3,}, I. Hook⁴, A. Verma⁴

E-ELT UK Project Office

¹Mullard Space Science Laboratory, University College London,
 ²INAF-IASF, Milan
 ³Kepler Institute of Astronomy, University of Zielona Gora
 ⁴University of Oxford

First UK LOFT Science Meeting, London, June 24-25 2013

The European ELT (E-ELT)

- A 39.3m diameter, <u>adaptive</u> telescope
- Approval June 2012, subject to confirmation
- First light early 2020s Total Cost: € 1082 million (2012)
- Top priority for European ground-based astronomy (ASTRONET)
- Retain European Leadership in the era of ELTs (ESO)

ELT primary mirrors GMT 24m JWST **HST** (2020)6.5m (2018) 2.4m TMT E-ELT 30m 39m (2021)

Collecting area = sensitivity Diameter = resolution (with AO)

VLT

8*m*

Larger collecting area than all major observatories put together!

The E-ELT site

E-ELT- Cerro Armazones

VLT- Cerro Paranal

20 km -

VISTA

Base camp

The Telescope

- Nasmyth telescope with a 39m diameter primary mirror
- The primary mirror is a mosaic of about 900
 1.45m exagonal segments.

- In 10' field-of-view, 0.2-24 μm, spatial resolution 5 mas@1 μm.
- □ Nearly 5000 tons of structure
- Two instrument platforms of the size of tennis courts
- Novel 5 mirror design to include adaptive optics in the telescope
- Classical 3-mirror anastigmat + 2 flat fold mirrors [M4,M5]

EXPLORING THE 4TH DIMENSION

Primary Mirror

- Real-time software, electronics and mechanics
- Maintain the shape and position of the telescope mirrors
- Compensate for changing gravity as telescope moves around the sky
- Compensates for wind shake on the telescope structure

- Partial correction of image wander induced by atmospheric turbulence
- Produces excellent image quality at infrared wavelengths

IN EXPLORING THE 4TH DIMENSION

Laser Guide Star System

- Six Laser Guide Stars for AO correction
- Outstanding image quality

- Adaptive optics needs a bright reference star
- Corrects a patch of sky around the reference
- Not always a natural star nearby
- Laser excites sodium atoms in the atmosphere to create an artificial star

★ Sodium LGS: minimum altitude 85km 5-10km thick

Turbulent volume up to ~20km

The European ELT status summary

Detailed design completed in 2011

- Industrial contracts resulting in several fixed-price offers
- Detailed science simulations: DRM
- Passed external reviews
- Dec 2011: Construction proposal published
- Dec 2012: approval of the ELT Programme by ESO Council
- Now awaiting Brazil to complete ratification procedure

EXPLORING

Current work

- Preparatory work going ahead
 - detailed design of M4 and access road
- Dome & Main structure specifications
 - Updated & discussed with industry
- Work on prototypes at the Hochbrück warehouse
 - M4 mirror support
 - Primary mirror segments
 - M5
- Work on design of AO systems and interfaces
- Definition of instrument requirements

LOFT and the E-ELT

- The E-ELT will not be a survey telescope. Synergy with LOFT/WFM for spectroscopic follow-ups
- Synergy with the LOFT/LAD more obvious X-ray and optical timing
- □ The E-ELT large collecting power makes it suitable for optical timing
- □ Most targets are faint (isolated pulsars V>25)
- Possibility of carrying out observations (e.g. phase-res polarimetry) still difficult at high energies

Name	Year	Age	mag	D(kpc)	Av	Phot	Spec	Pol	Tim	Astrom
Crab ^F	1969	3.10	16.5	1.73	1.6	UVOIR	Υ	Υ	Р	PM
B1509-58 ^F	2000	3.19	26	4.2	5.2	OIR		UL*		
B0540-69	1984	3.22	22	49.4	0.6	OIR	Υ	Y*	Р	PM (UL)
J0205+6449 ^F	2013	3.73	27.4	2	2.5	0				
Vela ^F	1976	4.05	23.6	0.23	0.2	UVOIR	Υ	Y *	Р	PM,PAR
B0656+14 ^F	1988	5.05	25	0.29	0.09	UVOIR	Υ	Υ	Ρ	PM
Geminga ^F	1984	5.53	25.5	0.16	0.07	UVOIR	Υ		Р	PM,PAR
B1055-52 ^F	1997	5.73	24.9	<0.72	0.22	UVO				РМ
B1929+10	1996	6.49	25.6	0.33	0.15	UV				PM
B0950+08	1996	7.24	27.1	0.26	0.03	UVO				
B1133+16	2008	6.69	28	0.35	0.12	0				
J0108-1431	2008	8.3	27.	0.3	0.05	0				
J0437-471 ^F	2004	9.20		0.14	0.11	UV	Υ			
J1308.6+2127	2002	6.17	28	<1	0.14	0				
J0720-3125	1998	6.27	26.7	0.35	0.10	0				PM,PAR
J1856-3754	1997	6.60	25.7	0.14	0.12	0	Υ			PM,PAR
J1605.3+3249	2002	-	27.2	<1	0.06	0				PM
RBS1774	2008	-	27.4	<0.5	0.2	0				
J0806-4123	2011	>6.5	27.9	<0.5	0.1	0				
SGR1806-20	2004	3.14	20.1	15	29	IR				
1E 1547.0-5408	2009	3.14	18.5	9	17	IR		Y *		
1E 1048.1-5937	2004	3.63	21.3	3	6.1	OIR		UL*	Ρ	
XTE J1810-197	2004	3.75	20.8	4	5.1	IR		UL*		
SGR 0501+4516	2009	4.1	19.1	~2	5	IR			Ρ	
4U 0142+61	2002	4.84	20.1	>5	5.1	OIR			Р	
1E 2259+586	2002	5.34	21.7	3	5.7	IR	*	phase-a	verage	ed

[±]UCL

Giant pulses in radio pulsars

- Giant Pulses are erratic variation of the peak-to-peak pulse intensity (few %)
- So far only observed in radio (~10 pulsars) and in the optical for the Crab pulsar (Shearer et al. 2003; Collins et al. 2012)
- Optical GPs linked in time with Radio GPs (coherent vs. incoherent radiation)
- Not yet observed in X-rays (Bilous et al. 2012) and gamma-rays (Lewandowska et al. 2011).
- Some of the best candidates (B0540-69 & J0537-6910) are very faint or undetected in radio Possible targets for the LAD
- B0540-69 is also a well known optical pulsar

LAD detection of Giant pulses

- Detectability of GXPs for Crab and B0540-69 (10 ks)
- □ 303000 light curves (50 bins) with random counts in one period
- □ Crab: GXP detected for a >34% flux increase at ϕ =0.0 (> 32 counts).
- □ B0540-69 (500x fainter; 10 bins): GXP detected for a 20x peak flux increase

[±]UCL

Debris disks around NSs

Evidence for post-SN debris disks around isolated NSs from optical/IR observations. Crucial for SN explosion models

X-ray Outbursts in Magnetars

- □ Many detected and studied by WFM + LAD
- Light curve changes after an event
- Multi-λ timing crucial to track twists in the magnetic field
- Phase-resolved optical polarimetry would be crucial to track changes in the magnetic field properties

Radio bursts in Rotating Radio Transients

- X-ray pulsations from one RRAT only (RRATJ1819-1458; McLaughlin et al. 2007). <u>More from the LAD</u>. Optical/IR pulsations/bursts can help understanding RRATs' nature.
- No steady optical/IR ctp. IR candidate for J1819-1458 (Rea et al. 2010)
 If no steady ctp, long integrations would wash out the optical/IR bursts
- □ Search for optical pulsations/bursts from RRATJ1819-1458 negative

NS and BH Binaries

- X-ray ms/s pulsations and QPOs detected in NS/BH binaries + erratic variability. Direct probe the motion of matter close to NS/BH
- Optical/IR variability probe different parts of the accretion disk. Structure (warps), albedo geometry, disk inclination, radius

Companion star irradiation. Jet formation and instabilities

PHASE-A Instrument Studies

METIS Mid-infrared Imager and Spectrograph with AO

MICADO Imager and Slit Spectrograph

EAGLE AO-assisted Multi-integral Field NIR Spectrometer

OPTIMOS-EVE Optical-NIR Fibre-based MOS

CODEX High Resolution, High Stability Visual Spectrograph HARMONI Single Field Integral-field Spectrograph

OPTIMOS-DIORAMAS Wide-Field Imager & Low-Medium Resolution Slit Spectrograph

SIMPLE Cross-dispersed Echelle Spectrograph, Long-slit Option

EPICS Planet Imager, Spectrograph and Imaging Polarimeter with Extreme Adaptive Optics

High Time Resolution Astrophysics at E-ELT

I

- Contributions to the E-ELT Science Case on HTRA
- With sub-minute and sub-second resolution, can study
 Extreme physics (e.g. pulsars, neutron stars, black holes) Identification of rapidly varying sources from other wavelengths Stellar phenomena, GRBs, transits and occultations
- SWG supportive of HTRA science case
 - □ Made draft resolution (to the project):
 - □ Continue to explore implementation within "existing" instruments
 - Keep open the possibility of a visitor focus in future (after 1st Gen?) for specialised instruments

EXPLORING THE 4TH DIMENSION

"The (E-ELT) Science Working Group also recommended the inclusion of more specific modes, such as spectro-polarimetry and high time resolution astronomy.

Allowing for visitor instruments would further enable the E-ELT to react to **important emerging niche science**.

A **visitor port** will therefore be available for at least the first six to eight years of telescope operation."

From 2013 the HTRA WG is part of the Opticon E-ELT Science WG

THE E-ELT CONSTRUCTION PROPOSAL

Current HTRA Instruments

□ Visitor instruments only. Successful. Portable. Tested at different telescopes

Instr.	Det.	Owner	Res.	Туре	Ref.
U-Cam	CCD	Warwick/Sheffield	5ms	imager	Dhillon et al.2007
U-Spec	emCCD	Warwick/Sheffield	1ms	spectrograph	Dhillon et al.2007
OPTIMA	SPAD	MPE	4 µs	photocounter/polarimeter	Kanbach et al. 2008
GASP	SPAD	Galway	1 ns	imager/polarimeter	Kyne et al. 2010

A Quantum Eye for the E-ELT

- QuantEye: pilot study for the OWL 100m telescope concept, based on quantum detector technology
- Two prototypes built: AQuEye@Asiago 182cm (Barbieri et al. 2009) & IQuEye@NTT (Naletto et al. 2009)
- SPAD (Single-Photon Avalanche Diodes) detectors
 - Multi-band light curves (0.1 ns time resolution)

QUANTUM OPTICS INSTRUMENTATION FOR ASTRONOM

D. Dravins¹, C. Barbleri², V. Da Deppo³, D. Farla¹, S. Fornasier², R. A. E. Fosbury⁴, L. Lindegren¹, G. Naletto³, R. Nilsson¹, T. Occhipinti², F. Tamburini², H. Uthas¹, L. Zampieri⁶

(1) Land Obsenatory, Kox A. SE-22100 Land, Sixedan J. Sopartheni d Astronov, Viniseri d Paloba, Ikib Sopartheni d Astronov, Viniseri d Paloba, Kobi ed Obsenatoris Z. T. 55122 Paloba, Ikib (4) Basan Taisecep Entereare Constructions facility A. Europan Southen Consensity: NS Statement State 20, SE-0640 Serieb (4) Biothenia, Generary (9) 1997 – Altenonical Observatory (9) 1997 – Astronomical Observatory Visio dell'Observatoris Structure, Constructions, Enterearies (2000) (2

Equeye: the ESO Quantum Eye A proposal for the highest in the world time-resolution single-photon photometer for the VLT as a precursor for a quantum photometer for the E-ELT

Submitted by: Cesare Barbieri¹ as P.I and by: Giovanni Bonanno², Dainis Dravins³, Roberto Mignani⁴, Giampiero Naletto¹, Erez Ribak⁵, Andrea Richichi⁶, Andrew Shearer⁷, Luca Zampieri² as Co.I.'s

¹University of Padova, Italy; ²INAF, Italy; ³Lund Observatory, Sweden;⁴MSSL, UK; ⁵Technion, Haifa, Israel; ⁶ESO and NARIT Thailand; ⁷NUI Galway, Ireland

- VLT prototype (EQuEye) proposal to be for post-Phase A instrument
- Not just photon counting, also phase-res spectroscopy and phase-res polarimetry
- New dimension in time-domain astronomy

EQUEYE @ E-ELT would be a powerful companion to the LOFT/LAD

		Time-Scale	Time Scale
		Now	ELT era
Stellar flares		Seconds/	10-100ms
and pulsations		minutes	
Stellar	White Dwarfs	1-1000 µ s	1-1000 µ s
Surface	Neutron Stars	-	0.1 µ s
Oscillations			
Close Binary	Tomography	100ms++	10ms+
Systems	Eclipse in/egress	10ms+	< 1ms
accretion &	Disk flickering	10ms	< 1ms
turbulence	Correlations	50ms	< 1ms
	(e.g. X & optical)		
Pulsars	Magnetospheric	1 μ s-	ns
	Thermal	100ms	ms
AGN		Minutes	Seconds

Conclusions

- The universe at sub-s time scales is still largely unexplored in the optical domain.
- Complement synergie facilities
- Possibility of exploiting p spectroscopy

- Possibilities of synergies with the LOFT/LAD in the study of compact objects. future radio and high-energy observing
 - time-resolved polarimetry and

- Time-domain astronomy at sub-st ELT rationale of opening the E-ELT SWG
- es satisfies the fundamental Espace. Positive feedbacks from
- Optical community is developing instrumentations for observations in the sub-s time domain

Faster Deeper : Expanding Astronomy in Time and Sensitivity with ELTs

May 13-16 2014 NUIG, Galway (Ireland)

SOC

Isobel Hook Andy Shearer Vik Dhillon Aga Słowikowska Roberto Mignani Ric Davies Roger Haynes Suzie Ramsay (INAF Rome/University of Oxford)
(National University of Ireland Galway)
(University of Sheffield)
(Kepler Institute of Astronomy University of Zielona Góra)
(UCL/MSSL, INAF-IASF Milan)
(MPE, Garching)
(Leibniz-Institut für Astrophysik, Potsdam)
(ESO)

