

The equation of state problem

effective theories and first principles

Arnau Rios Huguet STFC Advanced Fellow Department of Physics University of Surrey

UK LOFT meeting, 24 June 2013

Equation of State

Tolman-Oppenheimer-Volkov equations

$$\frac{dP}{dr} = -\frac{G}{c^2} \frac{(m+4\pi Pr^3)(\epsilon+P)}{r(r-2Gm/c^2)} \qquad \frac{dm}{dr} = \frac{4\pi\epsilon r^2}{c^2}$$

Equation of State

Mass-Radius relation

Equation of State

Tolman-Oppenheimer-Volkov equations

$$\frac{dP}{dr} = -\frac{G}{c^2} \frac{(m + 4\pi P r^3)(\epsilon + P)}{r(r - 2Gm/c^2)} \qquad \frac{dm}{dr} = \frac{4\pi \epsilon r^2}{c^2}$$

- Mass-Radius relation from bursts
- Bayesian data analysis to get model-independent EoS
 - 3 type-I X-ray bursts
 - 2 3 transient low mass X-ray binaries
 - 3 1 isolated cooling NS, RX J1856-3754

Isospin asymmetric matter Tuning correlations

Nuclear "trencadís"

Effective approach to the EoS

• EoS provides a characterization of bulk properties:

$$p(\varepsilon) = ? \iff \frac{E}{A}(\rho, \beta) = ?$$

$$\beta = \frac{N-Z}{N+Z}$$

- Taylor expansion
 - Minimum at saturation density, ho_0
 - Minimum in asymmetry: $\beta = 0$
 - Isospin symmetry \Rightarrow even powers of β
 - Give the coefficients a name!

$$\begin{aligned} \frac{E}{A}(\rho,\beta) &= \frac{E}{A}(\rho_0,\beta) \\ &+ 3\rho_0 \frac{\partial E/A}{\partial \rho} \Big|_{\rho_0} \left(\frac{\rho - \rho_0}{3\rho_0} \right) \\ &+ \frac{9\rho_0^2}{2!} \frac{\partial^2 E/A}{\partial \rho^2} \Big|_{\rho_0} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 \\ &+ \mathcal{O}(3) \end{aligned}$$

3 / 16

Effective approach to the EoS

• EoS provides a characterization of bulk properties:

$$p(\varepsilon) = ? \iff \frac{E}{A}(\rho, \beta) = ?$$

40

A [MeV]

$$\beta = \frac{N-Z}{N+Z}$$

- Taylor expansion
 - Minimum at saturation density, ho_0
 - Minimum in asymmetry: $\beta = 0$
 - Isospin symmetry \Rightarrow even powers of β
 - Give the coefficients a name!

$$\begin{split} \frac{E}{A}(\rho,\beta) &= \frac{E}{A}(\rho_0,0) + \frac{1}{2!} \frac{\partial^2 E/A}{\partial \beta^2} \Big|_{\rho_0,\beta=0} \beta^2 \\ &+ \frac{3\rho_0}{2!} \frac{\partial^3 E/A}{\partial \beta^2 \partial \rho} \Big|_{\rho_0,\beta=0} \beta^2 \left(\frac{\rho - \rho_0}{3\rho_0}\right) \\ &+ \frac{9\rho_0^2}{2!} \left\{ \frac{\partial^2 E/A}{\partial \rho^2} \Big|_{\rho_0,\beta=0} + \frac{1}{2!} \frac{\partial^4 E/A}{\partial \rho^2 \beta^2} \Big|_{\rho_0,\beta=0} \beta^2 \right\} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 \\ &+ \mathcal{O}(3,2) \end{split}$$

Shift of saturation point

β=0.0 β=0.2

β=0.8 β=1.0

Effective approach to the EoS

• EoS provides a characterization of bulk properties:

$$p(\varepsilon) = ? \iff \frac{E}{A}(\rho, \beta) = ?$$

$$\beta = \frac{N-Z}{N+Z}$$

- Taylor expansion
 - Minimum at saturation density, ho_0
 - Minimum in asymmetry: $\beta = 0$
 - Isospin symmetry \Rightarrow even powers of β
 - Give the coefficients a name!

$$\frac{E}{A}(\rho,\beta) = E_0 + E_{sym}\beta^2 + L\beta^2 \left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{1}{2!} \left\{K_0 + K_{sym}\beta^2\right\} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \mathcal{O}(3,2)$$

Shift of saturation point

EoS from basic nuclear properties

$$\frac{E}{A}(\rho,\beta) = E_0 + E_{sym}\beta^2 + L\beta^2 \left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{1}{2!} \left\{K_0 + K_{sym}\beta^2\right\} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2$$

Quantity	Experimental probes	Value	Ref.
$ ho_0$	(e,e') elastic scattering	$0.16 \ {\rm fm}^{-3}$	[1]
E_0	$\frac{E}{A}$ bulk systematics	-16 MeV	[1]
K_0	GMR energy in $Z \sim N$	$240\pm20~{\rm MeV}$	[2]
E_{sym}	$\frac{E}{4}$ bulk systematics + ID	32 ± 2 MeV	[3]
L^{-}	$\hat{I}D$, IVMR energies, δR	$61 \pm 11 \text{ MeV}$	[3]
K_{sym}	?	?	

Schuck & Ring, The Nuclear Many-Body Problem (Springer)
 Blaizot, Phys. Reps. 64, 171 (1981)
 Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)

²⁰⁸Pb skin thickness & L

Neutron-matter pressure is dominated by *L*:

$$p(\rho_0,\beta) = \frac{\rho_0\beta^2}{3}L$$

Does it correlate with nuclear observables?

 $\frac{208 \text{Pb skin thickness}}{\delta R} = R_n - R_p$

 $\delta R ~{\rm vs}~L$

S. Typel & B. Alex Brown, PRC **64**, 027302 (2001) X. Roca-Maza *et al.*, PRL **106**, 252501 (2011)

Parity violating electron scattering

$$\begin{split} q_n^W &= -1 \\ q_p^W &= 1 - 4sin^2 \Theta_W \sim 0.05 \\ A_{\rm PM} &= \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \end{split}$$

Free of strong interaction uncertainties. C. Horowitz *et al.*, PRC **63**, 025501 (2001)

C. Horowitz et al., PRC 85, 032501(R) (2012)

Lead Radius Experiment PREX (early 2010 in Hall A)

Abrahamyan et al., PRL 108, 112502 (2012)

UNIVERSITY OF

PREX CREX Edinburgh exp.: π^0 photoproduction

Kink in charge raddi

Radii of lead isotopes: open questions

6/16

Correlation between observables

Correlations from different observables

Lattimer & Lim, ApJ **771**, 51 (2013), arXiv:1203.4286.

Correlation between observables

Gogny: Rosh Sellahewa, PhD

Complications The hard life of nuclear many-body physicists

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^A \nabla_i^2 + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$$

- NN interaction is not uniquely defined
- Short-range core needs many-body treatment
- Chiral expansion ⇒ systematics & many-body forces

Complications The hard life of nuclear many-body physicists

Robert Roth - TU Darmstadt - 04/2013

Chiral perturbation theory

- $\hfill \hfill \pi$ and N as dof
- Systematic expansion in diagrams
- **3** 2N force at N^3LO LEC are fitted
- **4** 3N force at N^2LO 2 more LECs
- 6 4N force are small

Tews, Schwenk et al., PRL 110 032504 (2013)

- NN interaction is not uniquely defined
- Short-range core needs many-body treatment
- Chiral expansion ⇒ systematics & many-body forces

3BFs in Green's functions theory

Diagrammatic expansion with 3BF

Self-energy expansion to 2nd order

• Only skeleton 1PI diagrams needed

Effective interaction expansion

3BFs in Green's functions theory

- Only skeleton 1PI diagrams needed
- Number of diagrams substantially increases
- Usable in higher order resummations

<u>A. Carbone</u>, A. Cipollone, C. Barbieri, A. Rios & A. Polls 11 / 16

- Saturation properties of N3LO and NNLO similar
- NNLO \Rightarrow 2B & 3B same order in χ expansion
- Finite temperature & asymmetry also accessible

- Saturation properties of N3LO and NNLO similar
- NNLO \Rightarrow 2B & 3B same order in χ expansion
 - Finite temperature & asymmetry also accessible

- Saturation properties of N3LO and NNLO similar
- NNLO \Rightarrow 2B & 3B same order in χ expansion
- Finite temperature & asymmetry also accessible

Hebeler, Lattimer, Pethick & Schwenk, arxiv:1303.4662

- Saturation properties of N3LO and NNLO similar
- NNLO \Rightarrow 2B & 3B same order in χ expansion
- Finite temperature & asymmetry also accessible

Pairing properties

Cooling of Cassiopea A & ³PF₂ pairing

Age [yrs] Page *et al.*, PRL **106**, 081101 (2011)

$$\Delta_{lk}^{JST} = -\sum_{l'} \int_0^\infty \! \mathrm{d}k' k'^2 \langle kl | V^{JST} | k'l' \rangle \frac{\Delta_{l'k'}^{JST}}{2\chi_{k'}}$$

 $\frac{\text{BCS / quasi-particle}}{2\chi_{k}} = \frac{1 - 2f(\varepsilon_{k})}{2\varepsilon_{k}} \qquad \frac{1}{2\chi_{k}} = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega'}{2\pi} \frac{1 - f(\omega) - f(\omega')}{\omega + \omega'} A_{k}(\omega) A_{k}^{s}(\omega')$

Transport: nucleon mean-free path

$$\lambda_{k} = \frac{1}{\Gamma_{k}} \frac{\partial \varepsilon_{k}}{\partial k}$$

- $\lambda \sim 4-5$ fm above 50 MeV
- Compatible with *pA* experiments
- Small model dependence
 - $\lambda_0 \Rightarrow$ no non-locality
 - $\lambda_2 \Rightarrow$ full non-locality
 - $\lambda'_2 \Rightarrow m_k^*$ non-locality
- Classical approximation is incorrect!
- Little effect of 3BFs

A. Rios & V. Somà, PRL 108, 012501 (2012) 14 / 16

Conclusions

- Ab initio description of nuclear & neutron matter
- Fully self-consistent & quantum mechanical calculation
- Single-particle microscopic properties
- Thermodynamic properties
- Mean-free path in dense matter ✓
- Adding three-body forces consistently
- Pairing: 1S_0 , 3PF_2
- Other transport properties are coming

Thanks!

Neutron Stars Nuclear Physics, Gravitational Waves & Astronomy

29-30 July 2013

Institute of Advanced Studies, University of Surrey <u>http://www.ias.surrey.ac.uk/workshops/neutstar/</u>

V. Somà

T. U. Darmstadt

TECHNISCHE

W. H. Dickhoff Wash, U. St. Louis

A. Polls, **A. Carbone** University of Barcelona

Science & Technology Facilities Council C. Barbieri, A. Cipollone University of Surrey

