
UCL

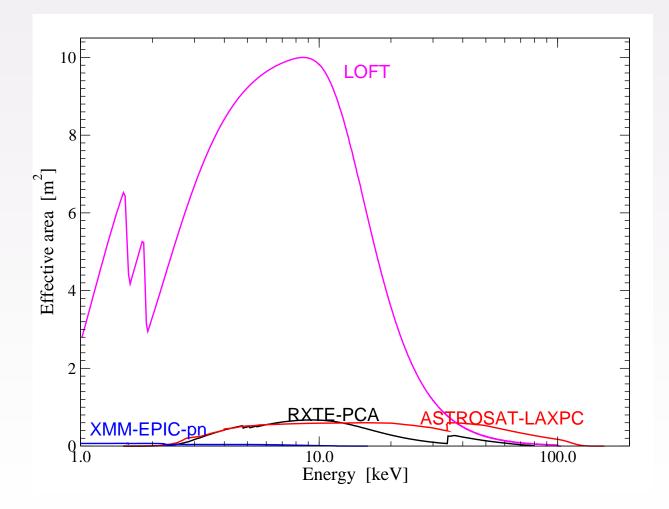
LOFT: Large Observatory For x-ray Timing

A mission selected by ESA as a candidate CV M3 mission Devoted to X-ray timing and designed to investigate the space-time around collapsed objects

> S. Zane (MSSL/UCL) on behalf of the LOFT Consortium

The First UK LOFT Science Meeting, London, 24-25 June 2013

Missions & discoveries

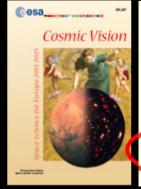


Rossi XTE (NASA)1995-

Millise COM Millise COM Spinsi & B Spinsi & B Spins & B

LOFT in 1 plot:

 $S/N \propto Area$, 1 sigma becomes 20 sigma (for uncoherent detection regime)


The LOFT consortium

<u>s</u> **‡** 🛞 12 C+

LOFT Science Team composed of scientists from:

EXPLORING THE

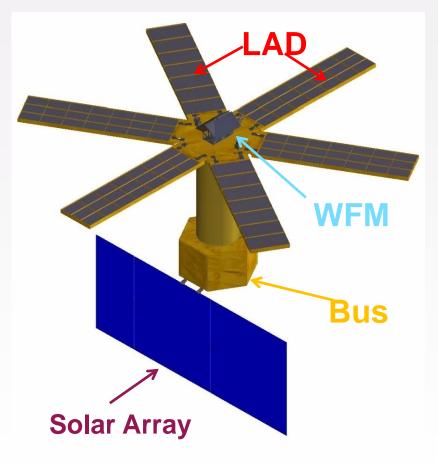
Australia, Brazil, Canada, CzechRepublic, Denmark, Finland, France, Germany, Greece, Ireland, Israel, Italy, Japan, theNetherlands, Poland, Spain, Sweden, Switzerla Turkey, United Kingdom, USA

3. What are the fundamental physical laws of the Universe? 3.1 Explore the limits of contemporary physics Use stable and weightless environment of space to search for tiny deviations from the standard model of fundamental interactions 3.2 The gravitational wave Universe Make a key step toward detecting the gravitational radiation background 3.3 Matter under extreme conditions Probe gravity theory in the very strong field environment of black holes and other compact objects, and the state of matter at supra-nuclear energies in neutron stars

THE LOFT SCIENCE TEAM

Jan-Willem den Herder SRON, the Netherlands Marco Feroci Luigi Stella Michiel van der Klis Martin Pohl Silvia Zane Margarita Hernanz Søren Brandt Andrea Santangelo Didier Barret Alex Short Carlos Van Damme/ Mark Ayre ESA David Lumb ESA

INAF/IASF-Rome, Italy INAF/OAR-Rome, Italy Univ. Amsterdam, the Netherlands Univ of Geneve, Switzerland MSSL, United Kingdom (LAD) IEEC-CSIC, Spain (WFM) DTU, Copenhagen, Denmark (WFM) Univ. Tuebingen, Germany IRAP, Toulouse, France FSA


The LOFT payload

Large area detector (LAD):

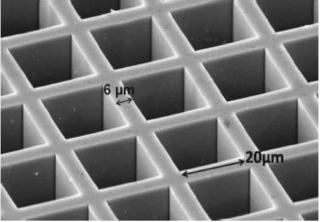
- 6 deployable panels
 10m² collimated area,
 2-30 keV, SSD+MCP,
 time res 10µs,
- ∆E ~ 260 eV @6keV

Wide field Monitor (WFM):

- coded mask detector
- 2-50 keV, 50% sky
- source localization 1'
- visibility to identify strong transients

UCL

Silicon Drift Detector heritage of the Inner Tracking System of the ALICE experiment, Large Hadron Collider (CERN)


INFN Trieste, in collaboration with Canberra Inc., designed, built, tested and calibrated 1.5 m² of SDD detectors (~300 units), now operating since ~2 yrs. High TRL, proven mass production. Thickness LAD has a mass production. Thickness LAD has a mass per unit area ~30kg/m2 Monolithic Active Area 76 cm² Low power requirement (r_{60} W/B²) sor RXTE/PCA, has Good spectral por produces or RXTE/PCA, has Good spectral por produce 260 eV FWHM

LAD Collimator

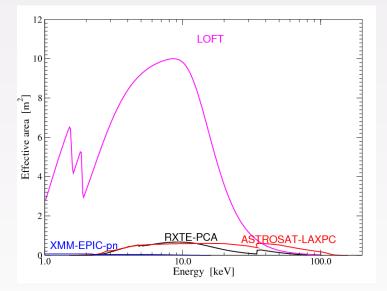
Built at Leicester SRC basing on Heritage BC MIXS-C

Capillary plate, High Pb content glass

MCP covered with Al filter

Achieving 10 m² effective area (~18 m² geometrical)

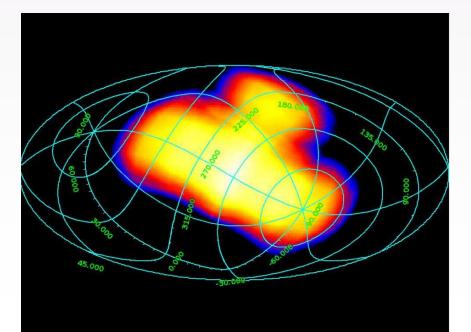
modular and redundant approach:

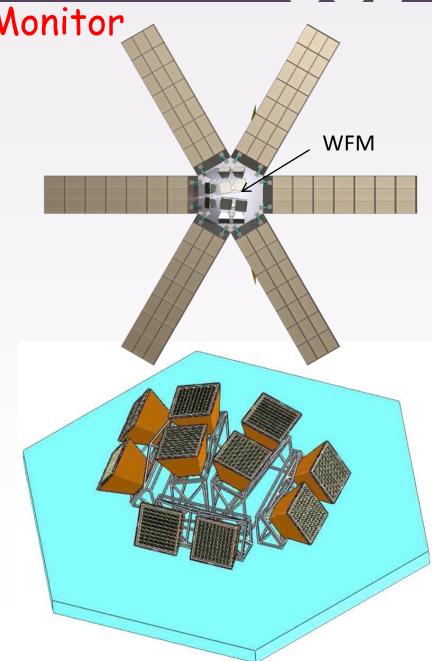

- 16 independent detectors per Module
- 21 independent Modules per Detector Panel
- 6 independent Detector Panels per LAD
- Total panel surface 21 m²

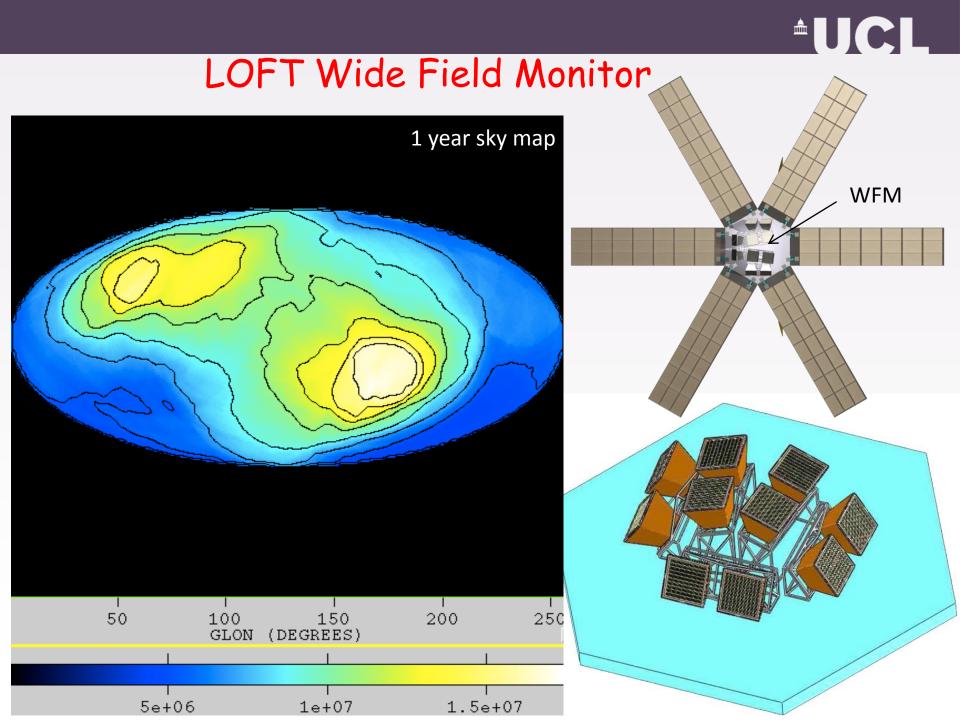
- 336 SDDs per panel
- 2016 SDDs in totals
- 1 MCP tiles per SDD

[•]UCL

LOFT Large Area Detector

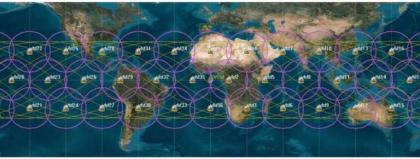

- Effective area 10 m² @ 8 keV
 - 0.25 10⁶ c/s/Crab
 - 1σ timing feature becomes 20σ
 → detect QPOs in the time domain !
- 200-260 eV resolution
 - resolve relativistic Fe lines at huge S/N
 - → see line profile fluctuate at GR timescales !
 - See all [sub] msec spins
 - Routine neutron star seismology
 - Measure pulse profiles at enormous precision





LOFT Wide Field Monitor

- 1820 cm² Si drift detectors
- 2-50 keV (-80 for b/g)
- 0.25 Crab in 3 sec, 2 mCrab in 60 ks
- 1 arcmin positions (5 arcmin res)
- 300-500 eV energy resolution
- 10 µs time resolution, 1 µs absolute timing


LOFT burst alert system

Automatic triggers for bright events on-board:

- Few to few 10 triggers/ day:
 ~1 arcmin location via VHF network within 30 s (onboard to end user)
- All triggers:
 - Full spectral and timing resolution
 - Pre-trigger data
 - Triggered data available within 1.5-3 hr

The HETE-II VHF Alert Network.

SVOM theoretical VHF network.

Expected: ~ 150 GRBs yr⁻¹

~ 5000 thermonuclear X-ray bursts yr⁻¹

See talk by L. Amati

More on the LOFT Payload

- See talk tomorrow by Jan Willem den Herder
- 2 posters on WFM/LAD by the two instrument teams (upstairs)
- Brochure with instrument specifications

ACTIVITIES

- ESA is studying mission in house
- 2 parallel industrial studies started early in 2012 and ended this month
- Instrument consortium is working on payload:
 - WFM: Hernanz (IEEC/CSIC) and Brandt (DTU)
 - LAD: Zane/Walton/Kennedy (MSSL)
- Science case
 - Coordinated by Stella (INAF), vd Klis (UvA) and Jonker (SRON)
 - Yellow book for ESA down selection: Nov 2013
- Selection of M3 mission beginning 2014 In the UK:
 - MSSL/UCL is leading the LAD payload -UKSA supporting
 - Leicester SRC (G. Fraser) leading the collimator study
 - Southampton, Durham, Manchester, Cambridge on the science working groups

LOFT objectives

1. Dense matter – supranuclear EOS

- Pulse profiles
- Spin measurements
- Seismology

2. Strong field gravity - GR in action

- Broad Fe line variability
- Epicyclic motion
- QPO waveforms
- 3. Observatory science

QPOs & Fe lines
in)
XRB & AGN

msec pulsations,

seismics

in XRB, SGR

- Broad-ranging programme using LOFT unique capabilities
- All three areas mainly open-time & proposal-driven

[•]UCL

Dense matter

RXTE discovered the signals:

- accreting millisecond pulsars
- thermonuclear burst oscillations
- SGR seismic oscillations (in giant flares)

LOFT uses them to characterize neutron stars

- neutron star spin distribution [discover many more spins]
- pulse profile modeling [measure M and R]
- SGR seismic oscillations in *intermediate* flares [NS interior]

See talk by Nils Andersson on activities of DM WG

Strong gravity

Previous missions discovered the signals:

- relativistic Fe lines (in binaries and AGN)
- dynamical and epicyclic timescale QPOs
 - black hole high-frequency QPOs (barely)
 - neutron star kiloHertz QPOs
 - BH&NS low-frequency QPOs

LOFT uses them to probe strong field gravity

- Relativistic line profile variability
 - <u>Merges spectral / timing diagnostics into one</u>
 - Tomography & reverberation
- Relativistic epicyclic motions
- Relativistic distortions of QPO waveforms

See talk by Luigi Stella on activities of SG WG

Â

Observatory Science

As for RXTE/PCA (but at much higher sensitivity), with a high flexibility in its observing program, LOFT will also be an Observatory for virtually all classes of relatively bright sources.

These include:

X-ray bursters, High mass X-ray binaries X-ray transients (all classes) Cataclismic Variables Magnetars Gamma ray bursts (serendipitous) Nearby galaxies (SMC, LMC, M31, ...) Bright AGNs

The LOFT WFM will discover and localise X-ray transients and impulsive events and monitor spectral state changes, triggering follow-up observations and providing important science in its own.

•Useful for a broad range of studies in X-rays

•Synergies with many other instruments projected for the 2020's

Observing program

Source Type	тоо	Sources	Pointings	Total Time (ks)
BH transient outbursts	Yes	4	800	2400
Persistent BH	No	2	400	1600
AGN	No	30	50	8000
Msec pulsar outburst	Yes	3	250	1000
NS transient bright outburst	Yes	3	250	1800
Persistent bright NS	No	12	350	4800
NS transient weak outburst	Yes	6	6	120
Persistent weak NS	No	14	14	280
Bursters	Yes	10	40	1000

Total: 4 years with a goal of 5 years. Significant part (50%) available for observatory science

See talk by Roberto Mignani on activities of OS WG

ESA/SRE(2014)X December 2013

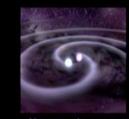
Large Observatory for X-ray Timing

Yellow Book Outline (to be delivered Mid Nov)

Symmetry energy

Cesa

LOFT's Dense Matter programme will lead to major advances in our understanding of fundamental physics and astrophysical phenomena



Black hole formation

Gamma-ray bursts

Core collapse supernova

Neutron star binary mergers

Assessment Study Report

[±]UCL

Table of contents

1	EXECUTIVE SUMMARY
2	SCIENTIFIC OBJECTIVES
	2.1 The Large Observatory for X-ray Timing: LOFT
	2.2 Supra Dense Nuclear Matter
	2.2.1 Introduction
	2.2.1.1 Dense matter physics
	2.2.1.2 Neutron rich systems
	2.2.1.3 Astrophysics
	2.2.2 Neutron stars to study dense matter
	2.2.2.1 Pulse profiles
	2.2.2.2 Spin measurements
	2.2.2.3 Magnetar Seismology
	2.3 Strong Field Gravity
	2.3.1 Overview
	2.3.1.1 Weak gravity
	2.3.1.2 Strong gravity
	2.3.2 Current status
	2.3.3 Models 2.3.4 Strong Field Gravity in action
	2.3.4.1 Relativistic line variability as probe of in the strong field gravity
	2.3.4.1.1 Tomography
	2.3.4.1.2 Reverberation mapping
	2.3.4.1.3 Spin of black holes
	2.3.4.1.4 Line profile and timing science goals
	2.3.4.2 Waveform as a probe of Strong Field Gravity
	2.3.4.3 High frequency QPOs as probe of Strong field gravity
	2.4 LOFT as Discovery Machine
	2.4.1 Introduction
	2.4.2 Accretion and ejection
	2.4.3 Strongly magnetized fields
	2.4.4 Thermonuclear burning
	2.4.5 High redshift
	2.4.6 Stellar astrophysics
3	· · · · · · · · · · · · · · · · · · ·
	3.1 Science requirements
	3.1.1 Area
	3.1.2 Spectral resolution
	3.1.3 Background
	3.1.4 Sensitivity
	3.1.5 Sky visibility and field of regard
	3.1.6 Transient monitoring (WFM)
	3.1.7 Mission duration
	3.1.8 Orbit
	3.2 Observation plan
	3.2.1 Core science
	3.2.2 Discovery space
4	PAYLOAD 23 4.1 Large Area Detector (LAD): 6 pages
	T.I Large Area Deletion (LAD). 0 pages.

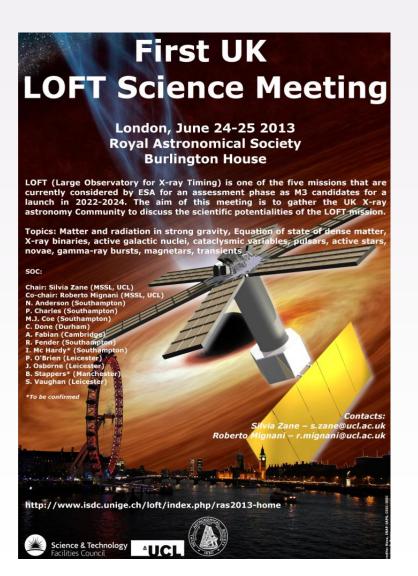
			Instrument Description
	4.	1.2	Interfaces and resource requirements
	T	able 4	4-3 The overall LAD telemetry budget
	4.	1.3	Operation requirements
	4.	1.4	Assembly, Integration and Test
	4.	1.5	calibrations
	4.2	Wid	le Field Monitor (WFM): 4 pages
		2.1	Instrument Description
	4.	2.2	Interfaces and resource requirements
	4.	2.3	Operation requirement
	4.	2.4	Assembly, Integration and Test
	4.3	Key	/ technology: 3-5 pages
		3.1	
	4.	3.2	Low noise ASICs for readout
	4.	3.3	LAD collimator
5			ION DESIGN
0	5.1		cecraft
	52		vice module
	53		cecraft resource budgets
,			
6			UND SEGMENT
	6.1		erview
			sion operations
	6.	2.1	Introduction
		2.2	
		2.3	
		2.4	
		2.5	
			ence operations and data handling/archiving
		3.1	Introduction
		3.2	Science operations centre
	•.	3.3	Science Data Centre
7	N		AGEMENT
	7.1	Pro	ject management
	7.2	Pro	curement philosophy
	7.3	Sch	edule
	7.4	Scie	ence Management
8	C	ом	MUNICATIONS AND OUTREACH
9			RENCES
1(DEX (OPTIONAL)
-	-		
11	L	LIS	T OF ACRONYMS (OPTIONAL)

35 pages for Science objectives

LOFT Large Area Detector

ltem	Requirement	Goal	
Effective area	4 m*@ 2 keV 8 m²@ 5 keV 10 m²@ 8 keV 1 m²@ 30 keV	5 m ² @ 2 keV 9.6m ² @ 5 keV 12 m ² @ 8 keV 1.2 m ² @ 30 keV	instrument size
Calibration accuracy area	15%	10%	
Energy range	2 - 50 keV	1 – 50 keV	
Energy resolution	260 eV @ 6 keV	200 eV @ 6 keV	SDD
	200 eV (singles, 40%) 2 keV above 30 keV (allows for binning)	160 eV (eingles, 40%)	and orbit
knowledge energy scale	10-2	0.8 10 ⁻²	
Collimated FoV (FWHM)	1 degree	0.5 degree	
Transparency of collimator	~1% at 30 keV	0.5% at 20 keV	Collimator,
Flat top	12 arcmin, ± 2%	12 arcmin, ± 1%	alignment
Time resolution	10 µs	7μs	
Absolute time	1 μs	1 µs	
Dead time	< 1% @ 1 Crab, < 10% @ 10 Crab	< 0.5% @ 1 Crab, < 5% @ 10 Crab	
Calibration knowledge deadtime	Less than the statistical precision of power spectrum for 1 day at 15 Crab (TBC)	Factor 2 better	
Background	< 10 mCrab	< 5 mCrab	
Background knowledge	10%	5%	
Max flux (continuous, no loss of info)	> 500 mCrab	> 500 mCrab	TM rates
Max flux (continuous, re-binned)	15 Crab	30 Crab	IMIALES
Onboard memory (transmit ted over more orbits)	15 Crab, 3 orbits	30 Crab, 3 orbits	

LOFT Wide Field Monitor



Item	Requirement	Goal	
Location accuracy	1 arcmin	0.5 arcmin	
Angular resolution	5 aremin	g aromin	Camera
Sensitivity (5 σ)	1 Crab (1 s) 5 mCrab (50 ks)	0.2 Crab (1s) 2 mCrab (50 ks)	dimensions
Calibration accuracy (sensitivity)	20 %	15 %	
Field of view	50% of the accessible part of the sky of the LAD	Same, as improvement of the sensitivity is the prime goal	FoV, camera location
Energy range	2 – 50 keV	1 – 50 keV	Detector,
Energy resolution	500 eV	300 eV	
Energy scale knowledge	4%	1%	coded mask
Number of energy bands for compressed images	8	16	
Time resolution	300 sec for normal	150 sec for normal	
	10 µsec for triggered	5 µsec for triggered	
Absolute time calibration	1 µsec	1 µsec	
duration for rate triggers	0.1 sec - 60 sec	0.1 - 60 sec	
Rate meter data	16 msec	8 msec	
Transient event down-link	< 3 hours (2 orbits)	< 1.5 hour (1 orbit)	Ground contacts
Availability of triggered WFM data	3 hours	1.5 hours	Ground contacts
Onboard memory	5 min @ 100 Crab	10 min @ 100 Crab	

The Mission

Item	Requirement	goal
Net observing time core science	21 Msec	33 Msec
Additional open observing time observatory science	20 Msec	30 Msec
Calibration time	5%	2%
minimum science observing times (during night time)	1 minute (1 source during 2 weeks per year) 10 minutes (10 sources during 2 weeks per year)	
Accessible sky fraction (daytime)	>50 %	75%
Mission duration	4 year	5 vear
Pointing accuracy (satellite + instruments combined)	1 arcmin	0.5 arcmin
Relative pointing error (RPE over observation)	1 arcmin	0.5 arcmin
Pointing knowledge for each axis over the full orbit (AMA, 3σ, 10 Hz)	<20 arcsec	<5 arcsec
ToO (following alert of SOC)		< 8 hours for 33% of the
	time	time + 24 hours for 66% of the time
Orbit	LEO, <600 km, < 5 deg	LEO, 550 km, <2 deg
Slews per orbit (average)	0.5	2
Instrument data rate (typical) ¹⁾	LAD: 200 kbps (~ 150 mCrab) + WFM: 100 kbps	WFM in event mode
Instrument data rate (sustained)	LAD: 600 kbps (~ 500 mCrab) + WFM 100 kbps ¹⁾	LAD: ~1 Crab
data transfer per orbit	6.5 Gbit/orbit	14 Gbit/orbit

The First UK LOFT Science Meeting

STFC-RAS-UCL funded

Main goal is to strengthen and corroborate interactions between UK LOFT science teams and the International LOFT community

http://www.isdc.unige.ch/loft